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Table l. List of  crystal space groups 
enantiomorphous ambiguity 

Crystal system Space groups 
Monoclinic P2, B2, C2, P21, Pro, Brn, Cm, Pb, Pc, Bb, Cc 

Orthorhombic Pmrn2, Atom2, Cmm2, From2, lmrn2, Pmc2t, Cmc21, 
Pcc2, Ccc2, Pma2, Area2, lma2, Pca2t, Pnc2, Pmn21, 
Pba2, Aba2, Pna21, lba2, Pan2, Abm2, Fdd2 

P4, I4, P4t, 141, P42, P43, P4mm, 14ram, P4bm, 
P42cm , P42nm, P4cc, P4nc, P42mc , P42bc , 14cm, 
14tmd, I4tcd 

P6, P6t, P62, P63, P64, P65, P6mm, P6cc, P63cm , 
P63mc 

Tetragonal 

Hexagonal 

with the 

Concluding remarks 

For the practical application of the proposed method 
it is necessary to know at least one atomic position. 
This problem can be solved by the trial-and-error 
method 

rt--> S(rt)--> V[S(rt)] 

and if V[S(rt)] c V(X), then rt ~ X. Note that the vec- 
tor sets of the factor sets S(r) and S(o~-r ) ,  as we 
have already mentioned, are always homometric. 
Therefore the scanning area for the trial vectors r, 
should cover, in general, only the 1 / ( L K M ) t h  part 

of the unit cell, where L is the number of symmetry 
operations, K is the number of centering translations, 
and M is the number of EO vectors. 

The application of the S-filtration method is 
especially effective for crystals with heavy atoms and 
high-order symmetries. Serious problems arise for 
so-called difficult structures, when the crystal sym- 
metry belongs to polar space groups (except for the 
trigonal system; see Table 1). In this case either 
Patterson or conventional direct methods would pro- 
vide an ambiguous solution in which the true structure 
and its enantiomorph are superimposed. This 
obstructs the solution of the structures. Special 
methods have been proposed to overcome this 
obstacle. For a detailed discussion on this topic, the 
reader is referred to the paper by Fan Hai-fu (1984). 
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Abstract 
For X-ray diffraction by a pure low-angle twist boun- 
dary perpendicular to a crystal surface, within the 
framework of the kinematic and dynamical theories, 
the following integral characteristics are calculated: 
(a) the bicrystal reflectivity in the vicinity of the lth 
reflection; (b) the integrated intensity of the lth reflec- 
tion; (c) the bicrystal total reflectivity, i.e. the sum of 
the integrated intensities over all reflections. The case 
for even h.  b (b is the diffraction vector, b is the 
Burgers vector of the boundary screw dislocations) 
is considered. In dynamical theory an increase of the 
total reflectivity of a bicrystal due to the boundary 
dislocation structure is obtained. 

0108 -7673/88/040425 -08 $03.00 

1. Introduction 
Diffraction methods have been successfully used in 
studies of the structure of grain boundaries. A detailed 
presentation of the results of such studies performed 
by the use of X-ray and electron diffraction was given 
in the review paper of Sass (1980). The use of X- 
radiation is greatly preferable, firstly because it lacks 
double diffraction, which complicates the diffraction 
pattern, and secondly because it enables the investiga- 
tion of relatively thick samples. X-ray diffraction 
studies of bicrystal block boundaries were carried out 
for the case when the boundary plane is parallel to 
the crystal surface. Both the high-angle and low-angle 
twist boundaries were investigated by Guan & Sass 

© 1988 International Union of Crystallography 



426 X-RAY DIFFRACTION BY A LOW-ANGLE TWIST BOUNDARY. III 

(1973, 1979), Gaudig & Sass (1979) and Budai, 
Bristowe & Sass (1983). A method for the direct 
determination of screw dislocation core structure was 
suggested (Guan & Sass, 1973) and the boundary 
thickness was determined (Budai, Gaudig & Sass, 
1979). 

In these works the studies were carried out on 
artificial bicrystals of gold and silver. Bicrystals of 
lead chalcogenides were used by Michailov, Savitsky, 
Sipatov, Fedorenko & Shpakovskaya (1983). The 
work of Lamarre, SchmiJckle, Sickafus & Sass (1984) 
was devoted to the treatment of effects of block 
materials, bond types (ionic, metallic or covalent) 
therein, and solute segregation on the boundary struc- 
ture of the blocks. 

The electron diffraction technique has been 
developed to study the thickness of pure tilt grain 
boundaries perpendicular or inclined to the foil sur- 
face (Carter, Donald & Sass, 1979, 1980). 

Unfortunately, the problem of X-ray diffraction by 
a bicrystal with a grain boundary parallel or perpen- 
dicular to the crystal surface has not so far been 
solved analytically, except for the case of a low-angle 
pure twist boundary perpendicular to the foil surface 
(Vardanyan & Petrosyan, 1987a; hereafter referred 
to as paper I). Such a theory would enable the 
intensities and half-widths of extra refections to be 
estimated and compared with experimental data. In 
paper I the superstructure factor approximation is 
used, which is valid at z o < A  (Zo is the dislocation 
superlattice period, A is the extinction length), i.e. 
when the diffraction in one cell of the superlattice 
(SL) is considered in the kinematic approximation 
(Vardanyan, Manoukyan & Petrosyan, 1985). The 
condition z o ~ A  means that the twist angle AO 
between the crystalline lattices of bicrystal blocks 
exceeds 10 -4 rad. Since in the case of a low-angle 
boundary AO < 10 -1 rad, the problem treated by us is 
restricted by the twist angles 1 0 - 4 <  A0 < 10 -1 rad. 

/ / 

7/y  / 

,,/ i T /  

/ 
/ 

Fig. 1. Bicrystal with a twist boundary perpendicular to the foil 
surface. D is the block thickness, Yb is the block size in the y 
direction, z o is the period of a dislocational superlattice, b is the 
Burgers vector of the dislocation parallel to the crystal surface, 
h is the diffraction vector. For dislocations perpendicular to the 
foil surface (hb)= 0. 

The expression for the dislocation SL superstructure 
factor M~.,, (l is a reflection number; n = +hb) is given 
in paper I. The analysis of that expression is carried 
out in paper II (Vardanyan & Petrosyan, 1987b), 
where the plane-wave image profiles of the boundary 
are also constructed. The image of the boundary is a 
narrow dark line (or several lines), so narrow that its 
width is less than the X-ray film resolution. Therefore, 
useful information about the boundary structure can 
be obtained using X-ray diffractometry. Since the 
entrance width of a counter is much larger than the 
effective size of the near-boundary region, the counter 
will detect the integrated intensity taken along the y 
axis perpendicular to the boundary plane (Fig. 1). 

In the present paper, within the framework of the 
kinematic and dynamical theories the following 
characteristics are calculated: (a) the bicrystal refec- 
tivity in the vicinity of the /th reflection; (b) the 
integrated intensity ofthe lth reflection; (c) the bicrys- 
tal total reflectivity, i.e. the sum of the integrated 
intensities over all reflections. 

The case of even hb only is treated. Absorption is 
not taken into account. 

2. The bicrystal reflectivity 
We denote by Rt,,, (p, Y) the reflectivity of the diffrac- 
tion plane y = constant, where 

Y = y / z o  (1) 

is the dimensionless coordinate of the diffraction 
plane; n =hb  at y > 0  (block 2) and n = - h b  at y < 0  
(block 1) and 

p = A (s - st) 

= (sin 2 0 B / c l x h l ) ( 0 -  o,) (2) 

is a parameter proportional to the deviation from 
the /th refection direction st = l/2zo; A = 
h cos O~/(C gh[) is the crystal extinction length; C is 
the polarization factor and Xh is the Fourier com- 
ponent of the crystal susceptibility. 

The approach developed by Vardanyan, 
Manoukyan & Petrosyan (1985) is that within the 
limits of the /th reflection one may consider the SL 
as an ideal crystal with the modified Fourier com- 
ponent of the crystal susceptibility 

Xhl = MI.nXh (3) 

where MI,,, is the superstructure factor. 
Therefore the formula for the reflectivity of the 

diffraction plane y = constant is identical to the corre- 
sponding formula for an ideal crystal, if in the latter 
Xh, I is used instead of Xh. 

As is noted in paper I, the dislocation SL super- 
structure factor M~., satisfies the following relations 
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[see equations (I-9), (1-21) and (I-22)]: 

Mr,,,= M_t,_,. (ha)  

IM,.. = nM,,j (4b) 

oo 

E M ~ . = I .  (4c) 
1=--oo 

The relations (4a)  and (4b) enable us to restrict 
considerat ion only to the case of  I11-> I,I. The t and 
n are of the same parity. The value l = n corresponds 
to the principal  reflections of  blocks 1 and 2, and 
values l # n correspond to extra ones. For even n the 
superstructure factor has the form 

where 

MO ' = ql,,I/4, at I = 0 (5a)  

Mr.. = (1 - q)q(Itl-1,,I)/4 

o ( ( I z l - I - I ) / E , 1 ) (  ×'(I.I/2)-~ ~l--2q), at In>O (5b) 
Mr.. = O, at In < O, (5c) 

q = e x p  (-47r1Y ) (6) 

and P~'~)(x) are Jacobi polynomials .  
The bicrystal  reflectivity is defined as 

Yb 

Rl. . (p)=(2yb) -'  [. Rl..(p, Y) dy (7) 
--Yb 

where Yb is the block size in the direction perpen- 
dicular to the boundary  plane. 

2.1. Kinematic theory 

Under  the condit ion D < At, where D is the block 
thickness and At = A/MI, .  the extinction length for 
the /th reflection, the mult ifold reflections between 
SL cells can be neglected. In this approximat ion  the 
reflectivity of  the diffraction plane y = constant  has 
the form 

where 

RI,.(p, Y)= M~.,,R~d(p) (8) 

Rid(P) = sin E ( ~ A p ) / p  2 (9) 

is an ideal crystal reflectivity in the kinematic approxi-  
mation (James, 1950), and 

A = D / A .  (10) 

Substi tution of  (8) into (7) gives 

Yb 

Ro,(p)=Rid(p)(2yb)- l  S M 2 t,,,dy. (11) 
_yh  

The evaluat ion of  the integral in (11) is per formed 
in Appendix  A. The result is: 

(a)  for the extra reflections (I # n) 

Rl,,(p) = Rid(P) Zo 
2"a'yb 

f 
] In[ , at n] (12a) jn2_12 [l < 

X [ n2 
l(l-----~--nE), at I > l n l ;  (12b) 

(b) for the principal  reflections ( l =  n) 

R.. (p)= Rid(P) ½- z___q_o ~ 1 
• 47ryb i=l i 87r n Yb]" (13) 

In Fig. 2 the values of  the bicrystal reflectivity at 
hb=2 and h b = 4  are shown. Since Zo<Yb, the 
intensities of  the principal  reflections l = +2 and l = 
+4 greatly exceed those of  the extra one. That  is why 
in Fig. 2 the intensities of  the principal reflections are 
not shown. The half-widths of all the reflections are 
the same and depend upon the block thickness. 

As noted in paper  II, the superstructure factor Mr,. 
at l #  n is significant in a narrow near -boundary  
region only. Both the centre and the effective size of  
that region depend on l and n (see Table 1 in paper  
II). Therefore the radiat ion scattered just  in that  
narrow region essentially contributes to the magni- 
tude of Rt,. (p). For example,  the superstructure factor 
of the extra reflection l =  0 has a sharp max imum 
IMo,.lmax = 1 at y = 0. The half-width of  the max imum 
decreases as In[ increases. Therefore,  by increasing 
Inl we decrease the effective size of  the region essen- 
tially contr ibuting to the magni tude of Ro,., the form 
of which is determined from (12a) as 

R 0 , . ( p )  = Rid(P)Zo/2=lnlyb. (14) 

R,.. (arb. units) 

n = 2  

, ! 

I 
n=4 [ 

l 

,l I 
1 

-8  -6  -4  -2  

I 
I 

o.s I 

I 
I 
I 
I 
I 

II, . 

I 
l 
I 
l 

0 2 4 6 

! - I 
8 

Fig. 2. Bicrystal reflectivity in the kinematic approximation (A ,~ 
1). l is a reflection number; l = +n are the principal reflections 
of the blocks. Half-widths of all the reflections are identical. 
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From (4b) and (11) it follows that in the kinematic 
approximation 

nE g,,,t(p) = 12Rt..(p). (15) 

Note that in (15) the fact that Xh changes with chang- 
ing n is not taken into account. 

2.2. Dynamical theory 

If the condition D ~ A t  is not fulfilled, then the 
multifold reflections between SL cells cannot be 
neglected. According to the dynamical theory, the 
ideal crystal reflectivity is (Pinsker, 1978) 

sin 2 [TrA(pE+ 1) uE] 
Rid(P) - pE+ 1 (16) 

In accordance with the general approach, replacing 
Xh by Xht in (16), for the reflectivity of the diffraction 
plane y = constant, one can write 

~Ar 2 ~ 1/2,1 
Rt,,(p, Y) = M 2 sinE [IrA(pE+~" t,,J j (17) 

I,n 2 pE+ Ml,, 

Substituting (17) into (7), for the bicrystal reflectivity 
we have 

Yb 

1 f M2 
R,,,, ( p ) = "~Yb "" 

--Yb 

/ I / / 2  ~ 1 / 2 -  I sin2 [zrA(p 2+ ,,, ', t . . J  j 

dy. pe + Mr2 

(18) 

For the extra reflection l - -0,  substituting (Sa) and 
(6) into (18) and using the approximation A,~ 
exp (47ryb/Zo) we can write 

1 

Zo f sin 2 [TrA(p2+ql"l/2) 1/2] 
Ro,,,(p) = ~ p2 + ql,,I/2 

0 

q(I,,I/2)-1 dq. 

which after a simple transformation is reduced to 
the tabulated integral (Proudnikov, Brychkov & 
Marichev, 1981) 

r rA(  p E +  1 )1/2 

Zo ~ sin 2 (x) 
J dx Ro,,,(p) - rr n Yb X 

,~AlPl 

~0 1/2] 
--27r n Yb {f[2~'a(pE+ 1) 

-f(27ra[p[)} (19) 

where f ( x )  = 3' + In x - ci (x); ci (x) is the cosine- 
integral function and y = 0.5772 is the Euler constant. 
The f ( x )  values are tabulated by Abramowitz & 
Stegun (1965). 

Fig. 3 shows the p dependence of Ro,, for three 
values of bicrystal thickness. With increasing thick- 
ness the reflection curve narrows around the p = 0 

direction. At the reflection centre p - - 0  we have 

Ro,,,(O)=(Zo/27rlnlyb)f(2~'A). (20) 

According to the kinematic theory, from (14) we 
obtain 

k in  Ro,.(O)=(zo/Ezrlnlyb)(TrA) 2. (21) 

Fig. 4 shows the thickness dependence of Ro,,(O) in 
the kinematic and dynamical theories. 

As seen from (16) in the dynamical theory the ideal 
crystal reflectivity Rid(0 ) =s in  2 (IRA) has an oscilla- 
tory behaviour, which is due to the X-ray multiple 
reflections inside the crystal (extinction). In the 
bicrystal case, for the l = 0  extra reflection, the 

Ro. n (arb. units) 

-1 1 

A = 1 0  

/ 
-1  1 

L ,o 

• p 

- p 

Fig. 3. Rocking curve of the ! = 0 reflection according to dynamical 
theory. 

Ro. . (arb. units) 

5 

i 

(b) 

L A  

Fig. 4. Thickness dependence of the ! = 0 reflectivity at p = 0 
according to (a) kinematic and (b) dynamical theories. 
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dynamical features of the scattering occur in the near- 
boundary region only, since the extinction length of 
this reflection Ao , ,=A exp(~rInY]) shows a 
minimum at y -- 0 and increases exponentially on both 
sides of the boundary plane. Therefore, under the 
condition A < exp (4~yb/Zo) , which is in fact always 
valid, R0,,(0) monotonically increases with A. For 
the other extra reflections one fails to obtain a simple 
analytical expression. However, from the above con- 
siderations one may state that the conclusions con- 
cerning Ro,, are qualitatively also valid for R~,,. 

where J,,(x) is the Bessel function of the nth order and 

Jo(x) = i Jo( t) dt 
0 

we obtain 

Yb 

R' a'n" f M,,,fo(27rAMl,,) dy. (26) 
l,n - -  4eb_ " " 

--Yb 

The integral in (26) is evaluated in Appendix B. 
(a) For the extra reflection l = 0 

3. The integrated intensity of a bierystal 

As is well known, the integrated intensity is defined 
as a quantity proportional to the area under a reflec- 
tion curve (Pinsker, 1978) 

RI,,, = a ~ Rt,,,(p) dp (22) 
--CO 

where 

a = C , ~ h / s i n  20B. 

3.1. Kinematic theory 

Substituting (12a), (12b) and (13) into (22) and 
taking into account the relation valid in the kinematic 
approximation, 

CO 

I R i d ( P )  dp = "/tEA, 
-co 

we obtain: 
(a) for the extra reflections (l # n) 

i 
R I ,  n = O~ 

I I. 
n2_12, at II < nl (23a) 

~Azo x n2 

2yb []l(12-n2) ' at II > In  ; (23b) 

(b) for the principal reflections (I = n) 

(1"1/2)-' 1 3Zo '~ 
Ri"'" = c~r2A ½--4~yb "i~l i 87r n yb]" (24) 

Thus, in the kinematic approximation R i , . - A .  For 
the l = 0 reflection from (23a) we have 

R~.. = o~zrAzo/2]nlyb. (25) 

3.2. Dynamical theory 
Substituting (18) into (22) and taking into account 

the tabulated integral 
co 

f sin [erA(p2 + 1) 1/2] 7r 
p 2 + l  dp =-~ .~(27rA) 

--CO 

R~,,,- aZo [fo(2"n'A)-J,(27rA)]. (27) 
2 nyb 

(b) For other reflections we restrict ourselves to 
consideration of the case hb = 2. Then, from (5b) for 
the superstructure factor we have 

Mr,2 = q(10-2)/ 4(1 - q ). (28) 

For the Ill > 2 extra reflections we have 

RI,2 - aZo 
4yb( l +2)  

( -1)mF(2m + 1)F[½([ll-2)(m+ 1)] 
X 

×(2~a) zm+' (29) 

where F(x) is the gamma function. 
From (29) we obtain 

O~Z0 7/'774 

R 4 ' 2  - -  4yb 3 

where 

× [J,/3( n4)J_,/3(,O4)- J2/3( n4)J_2/3( r]4)] (30) 

r/4 = [(x/3)/9127rA 

R~d = (a'a'/4)fo(2"rrA) (33) 

is the integrated intensity of an ideal block. Note that 
AR~,2 < 0. 

where 

and 

aZo .n-x/2 
R6'2--4yb 16 r/6 

x [ J 1 / 4 ( n 6 ) J _ l / 4 ( n 6 ) - J 3 / 4 ( T q 6 ) J _ 3 / 4 ( ~ 6 ) ]  (31) 

where 

776 = ~ 2zrA. 

(c) For the principal reflection 
i i i 

A R 2 ,  2 = R 2 ,  2 -  R i d  

C~Zo ~ (-1)m(27rA) 2' '+' 2m/~121 
- i6--fyb ,,=o 22m(m!)2(2m+ 1) -= 7 (32) 
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In Fig. 5 the thickness-dependent  quantit ies R't,2 
for the l = 0, l = 4 and l = 6 extra reflections are pres- 
ented. At small A a linear increase of the integrated 
intensity is observed, which agrees well with the 
kinematic theory. With a further increase of A a 
deviation from the kinematic law R ~--- A is revealed 
(extinction). 

At A >> 1 from (26) we obtain 

--:---az° I 1, at l = 0 (34a) 
Ri'2=4ybx ~4/(12--4), at ll> 2 (34b) 

and 

A R  i~, 2 ~-- - (  OlZo/ 4yb  ) X ~. ( 3 4 C )  

4. The total reflectivity of a bicrystal 

If the bicrystal and the counter  are rotated in the 
vicinity of  the lth reflection direction st, then the 
integrated intensity of the lth reflection is involved. 
However,  if the rotation involves a much wider 
angular  region, then the sum of the integrated 
intensities of  all reflections is involved. 

Thus, the total reflectivity of a bicrystal will be 
determined as 

oo  

Ri, = ~ RI,,. (35) 
I =  - - c o  

I f a  bicrystal is represented as a set of two ideal blocks 
and the dislocational structure of the boundary  of 
the blocks is not taken into account,  the total reflec- 
tivity of the bicrystal is equal to 2Rid, where Rid is 
given by (33). The relative change of the total reflec- 
tivity of the bicrystal due to the boundary  structure 
is defined as 

= - - 2 R i d ) / 2 R i d .  (36) 

R'~.a 

I = 0  
1 

1=4 

2~A 

Fig. 5. Thickness dependence  for the integrated intensity of  a 
bicrystal at n = 2 and l = 0, 4 and 6. 

Table 1. Values of Cm for m = 1 to 10 

m 1 2 3 4 5 
C, , ,  32"9333 -107.6791 159"8271 -137"5375 77.5102 

m 6 7 8 9 10 
C,,, -30.8395 9.0948 -2.0275 0.3257 -0-0292 

4.1. Kinematic theory 

According to the kinematic theory, R i 2 t . , -  Mz,~, so 
using (4b) one can show that 

e,, =0 ,  (37) 

which means that in the kinematic approximat ion  the 
dislocational structure of  the boundary  of the blocks 
does not change the total reflectivity of the bicrystal. 

4.2. Dynamical theory 

For hb = 2 we have 

R~),2+ 2 ~ R ~ k , 2 +  2ARi9,2 
k = 2  

e2 = 2R~d (38) 

i where the relation RI,, = R - t - n  is used. 
Substituting (27), (29) and (32) into (38), we obtain 

e2 = (Zo/27ryb)Q(2~rA). (39) 

The Q(x) function has a complicated form, but at 
x <-8 it may be approximated  by polynomials  

l 0  

Q ( x ) =  Y, C,,(x/8)2"+l/Jo(x ). (40) 
m = l  

The C,,, values are given in Table 1. 
In the kinematic approximat ion Q = 0 in accord- 

ance with (37). 
At x >> 1 from (34) we obtain 

lim Q(x)= 2. (41) 
x---~ oo  

Fig. 6 shows the x dependence of Q computed  
from (40) at x-< 8. As seen from the figure the curve 
has maximum Q,,-~ 3.15 at x = 5.4, which coincides 

O(x) 

1 

i . . . . . . .  

Fig. 6. The Q(x)  function at x <-8. 
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with the minimum of AR2, 2. Thus, owing to the peri- 
odic dislocation structure of the boundary, extra 
reflections are involved, which increases the total 
reflectivity of a bicrystal. On the other hand, because 
of that structure, the integrated intensities of principal 
reflections decrease. At small A both factors com- 
pensate each other and e, = 0. With increasing A the 
extinction effect becomes important, and at some 
value of A the effect of the second factor is minimum. 
Thus, if the bicrystal thickness is such that extinction 
cannot be neglected, when the total reflectivity of a 
bicrystal is calculated, neglecting the boundary struc- 
ture may cause an error. The smaller the block size 
Yb along a direction perpendicular to the boundary 
plane, the more significant is the error. 

As is well known, in the theory of X-ray diffraction 
by mosaic crystals the model used is one in which 
the blocks of a mosaic crystal are considered as ideal, 
i.e. the structure of inter-block boundaries is ignored 
(Zachariasen, 1967). Proceeding from our results 
obtained in the present paper one may suppose that, 
if block sizes are such that primary extinction is to 
be taken into account, then the contributions of block 
boundaries to the integrated intensity of a mosaic 
crystal cannot be neglected. 

& Marichev, 1981), and the result is 

Ft, n = Z° 21/2 
87ryb ]l (l 2 -  nZ)" (A4) 

Using (4b) for [tl<l//I we find 

Zo 2In I 
Ft.. - 8.try b 12 - n2. (A5) 

(b) For the 1= n = 2 r  principal reflections, from 
(5b) we have 

M,,. = ( 1 .  - q ) P ( ° " ) ( 1 - 2 q ) .  ~-, (A6) 

Substituting (A6) into (A1) and noting that x = 1 - 2q, 
we obtain 

1 - 2 x  o 

zo f • = --X) [Pr'2", (x)] dx F . .  327ryb (1 +X)2(1 - I  ( 0 1 )  2 

(A7) 
where 

Xo = exp (--47ryb/Zo) .~ 1. (A8) 

Using the relation 

APPENDIX A 

We shall evaluate the integral 

Yb 

1 f M 2  F~. , , -2y  b o, dy. (A1) 

--Yb 

(a) For the l #  n reflections the integration limits 
can be extended to infinity, since with the increase 
ofy  M~.,, decreases rapidly. Denoting l = 2k and n = 2r 
and transforming the integration variable from y to 
q defined by (6), we obtain 

1 

Zo f qk_r_l( 1 r D ( k _ r , i ) (  1 Ft .  = ,  8Try b ., - q)21_--r-i ~. --2q)] 2 dq. 

o (A2) 

After substitution of x = 1 - 2 q  into (A2) it becomes 

Zo 1 
FI.. -- 8"tryb 2 k-r+2 

1 - - x ) k - r - l (  ( k - r  l )  2 x 2 j" (1 l + x ) [ P r _ l '  (x)] dx 
--1 

_- , i (  1 - -  x)k-r(l_l_x)[Pr_l.(k-r 1) (x)] 2 dx}. (A3) 

These integrals are tabulated (Proudnikov, Brychkov 

(1 + X)D(°")( = P r - , ( x ) +  Pr(x) 

where Pr(x) are the Legendre polynomials and using 
tabulated integrals (Bateman & Erdelyi, 1953) we find 

Fn, n : Zo 
3 2 7ryb [2Pr-l(y) Qr_,(y) + 2 P r ( ' y ) Q r ( T )  

+ 4 P r ( y ) Q r - l ( y ) - 4 / r ] ,  (A9)  

where Q,,(x) are associated Legendre functions of 
the second kind, and 

y = ( 1  + Xo)/(1-Xo)~--  1 + 2Xo. 

Since P . ( y ) =  1, from (A9) we obtain 

F,,,,, - 32~yb 4 In -- 8 - - -  
3 ' - 1  i = l  i 

_1 Zo ~11 3Zo 

2 4"n'yb i=l i 16rrryb" 
(A10) 

APPENDIX B 

We shall evaluate the integral 

Yb 1; 
Gt.. =2yb M~.ffo(2~rAMt..) dy. 

--Yb 

(B1) 
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Using the expansion 

Jo(x) = ~ (--1)mx2m+' 
r.=O 22"(2m + 1)(m !)2 

(B2) 

from (B 1) we obtain 
Yb 

_ { A,f ~2m+2 
Gt, n 2yb m=o22m(2m+ l ) ( m ! ) 2  t ' ' l , . J  dy. 

--Yb 
(B3) 

(a) For the l = 0 reflection 

Mo,. = qlnl/4 

and from (B3) we obtain 

Go,. - 27rnyb ,,,=o 22m (m !)2 2m + 1 m + 1 

Zo [Jo(27rA)-J , (27rA)] .  (B4) 
7rnyb 

(b) For the I ~ n = 2 reflections, substituting (28) 
into (B3) and using (B2) we obtain 

Z0 

G"2 = 2 rryb(lll + 2) 

~ ,  ( - 1 ) ' r ( 2 m +  1 ) r [ ½ ( l l l - 2 ) ( m +  1)] × 
,,=o/'-' 2 ~ F ( m + l ) r [ ½ ( l l  + 2 ) ( m + l ) ]  

x (27ra) 2''+~ (B5) 

Using the expansion (Abramowitz & Stegun, 1965) 

( - 1 ) " ( r l / 2 ) 2 " F ( 2 m +  1) 
g,( 77 )g - . (  71) = ~ o  ( rn ~.~F(( m + iT i- . )  

one can obtain (30) and (31). 
(c) For the l =  2 principal reflection 

M2, 2 = 1 - q 

a n d  f r o m  ( B 3 )  w e  o b t a i n  

G 2 2 - ½ ] o ( 2 " n ' A ) = -  z---L-° ~ ( - l ) " ( 2 r r A ) 2 " + '  
• 87ryb ,,,=o 2 ; -~ ( -mi )2 -~m+ 1) 

I 

f l - (1 - q ) 2 m + 2  
x d q  

q 
0 

= -  z.______~o ~ ( - l )" (27rA)  2''+' 

8 ~Yb ,,, =o 2 2" (m !)2(2m + 1 ) 

2m+2 1 
x Y' -7. (B6) 

i=1 | 
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